- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Appel, Andrew W (2)
-
Bindel, David (2)
-
Jeannin, Jean-Baptiste (2)
-
Kellison, Ariel E (2)
-
Tekriwal, Mohit (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Dubois, Catherine (2)
-
Kerber, Manfred (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dubois, Catherine; Kerber, Manfred (Ed.)Solving a sparse linear system of the form Ax = b is a common engineering task, e.g., as a step in approximating solutions of differential equations. Inverting a large matrix A is often too expensive, and instead engineers rely on iterative methods, which progressively approximate the solution x of the linear system in several iterations, where each iteration is a much less expensive (sparse) matrix-vector multiplication. We present a formal proof in the Coq proof assistant of the correctness, accuracy and convergence of one prominent iterative method, the Jacobi iteration. The accuracy and convergence properties of Jacobi iteration are well-studied, but most past analyses were performed in real arithmetic; instead, we study those properties, and prove our results, in floatingpoint arithmetic. We then show that our results are properly reflected in a concrete implementation in the C language. Finally, we show that the iteration will not overflow, under assumptions that we make explicit. Notably, our proofs are faithful to the details of the implementation, including C program semantics and floating-point arithmetic.more » « less
-
Tekriwal, Mohit; Appel, Andrew W; Kellison, Ariel E; Bindel, David; Jeannin, Jean-Baptiste (, Springer)Dubois, Catherine; Kerber, Manfred (Ed.)Solving a sparse linear system of the form Ax = b is a common engineering task, e.g., as a step in approximating solutions of differential equations. Inverting a large matrix A is often too expensive, and instead engineers rely on iterative methods, which progressively approximate the solution x of the linear system in several iterations, where each iteration is a much less expensive (sparse) matrix-vector multiplication. We present a formal proof in the Coq proof assistant of the correctness, accuracy and convergence of one prominent iterative method, the Jacobi iteration. The accuracy and convergence properties of Jacobi iteration are well-studied, but most past analyses were performed in real arithmetic; instead, we study those properties, and prove our results, in floatingpoint arithmetic. We then show that our results are properly reflected in a concrete implementation in the C language. Finally, we show that the iteration will not overflow, under assumptions that we make explicit. Notably, our proofs are faithful to the details of the implementation, including C program semantics and floating-point arithmetic.more » « less
An official website of the United States government

Full Text Available